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Abstract 
 
 

  In this paper we present a GPU-based method for 
removing shape details of 3D models. 3D models used 
in Finite Element Analysis (FEA) are often either 
constructed for the purpose of manufacturing, or a 
result of 3D scanning. The models therefore contain 
shape details that are neither important for FEA nor 
compatible with the mechanical hypotheses. Vertex 
removal is a popular method for removing geometrical 
details where vertices are removed one by one, 
provided certain constraints are satisfied. The 
constraints can either be based purely on geometrical 
properties, or also on mechanical ones. 

  The computations required in this process can be 
time consuming, especially if mechanical constraints 
are involved. The main idea behind our method is to 
perform the computations for all the vertices in 
parallel using graphics hardware, and then use the 
CPU to maintain the data structure representing the 
triangulation. 

  As a result, simplification functions can stay 
interactive while incorporating complementary 
mechanically-based criteria in addition to the 
geometric ones involved in shape transformation. 

 
1. Introduction 

3D models used as input of FEA are often 
constructed for the purposes of manufacturing, and 
therefore contain numerous details that are part of the 
component “as-manufactured”. To meet the objectives 
of the component behavior simulation and reduce the 
time spent in the FEA process, it is required that these 
details are removed. Expressing mechanical 
hypotheses defining the simplification of an analysis 
domain is mandatory for current simulations in the 
context of FE analyses. The corresponding shape 
adaptation for FE models is achieved by the 
elimination of shape sub-domains when their presence 
has no effect or, possibly, a weak effect on the 
mechanical behavior while imposing an undesirable 

local FE mesh density. Such sub-domains are referred 
to as details since they incorporate simultaneously 
mechanical as well as geometric meanings. Examples 
of these details include not only fillets, rounds which 
remove sharp edges for manufacturing purposes, but 
also shape features such as holes, small protrusions, 
etc. 

Although modern CAD systems tend to integrate 
FEA tools in a design environment, generating FE 
models from design models remains tedious. In 
general, there is little or no feedback from CAD 
systems regarding the impact of modifications with 
respect to mechanical criteria. This is a major issue for 
integration of FEA into product design, and for 
development of objective criteria and/or constraints to 
help engineers prepare FE models. Several approaches 
have been proposed to ease the preparation of the FE 
models through detail removal operators [1], [18], [21]. 
Most of these approaches are  based on NURBS model 
transformations, which have not led to strongly 
automated processes. 

Another approach is to create an initial FE mesh 
prior to removing the unwanted details [16], [21]. In 
this approach, triangulation subsets forming details are 
removed by performing well-known mesh transitions, 
e.g. collapsing the faces of a tetrahedron to remove the 
element. However, these transformations are directly 
performed on a FE mesh and are not able to track 
shape changes. Thus, it is not possible to apply 
objective criteria to evaluate the mechanical influence 
of the induced shape transformations.  In this setting, 
objective criteria are quantitative and based on input 
parameters of the shape, without contribution from the 
engineer's know-how. 

Yet another approach separates the shape 
transformation stage from the FE mesh generation 
stage [7], [13], [14]. Modeling the initial shape as a 
polyhedron represented by a triangulation allows 
vertex removal or edge collapse operators to be used to 
simplify the model. This allows the generation of 
arbitrary shape changes. The method proposed here is 
based on this approach.  



Vertex removal operators can be time consuming. 
In addition, if local mechanical criteria are included in 
the shape transformation, the consumption of each 
elementary operation is further increased. Thus, the 
detail removal processes may be too time consuming to 
be suitable for interactive applications. In this paper we 
present a method that uses graphics hardware to 
improve the performance of the vertex removal, even 
when criteria are associated with the shape 
transformation process. The main idea behind our 
method is to perform computations for all the vertices 
in parallel using graphics hardware, and then determine 
which vertices to remove.  

After the introduction of programmable Graphics 
Processor Units (GPUs), only a few years ago, there 
has been an increasing interest for using GPUs for 
computations. The popularity is not only due to the 
performance of current GPUs, but also to the expected 
increase in performance difference between CPUs and 
GPUs. In this paper we will therefore study whether 
the GPU can be used to reduce the computational time 
for mesh simplification and which mechanically-based 
criteria can be associated with the local shape-change 
operators.  

The paper is structured as follows. Section 2 
summarizes the main characteristics of the proposed 
approach, section 3 reviews the works related to the 
current proposal. Then, section 4 describes the 
structure of the proposed algorithm, highlighting the 
overall architecture and the main steps of the shape 
transformation process. Section 5 gives a short 
introduction to GPUs. Furthermore it describes the data 
structures used in our method and the compromise 
between the desired efficiency improvement and the 
restrictions due to the GPU. Section 6 introduces 
numerical results, before concluding remarks are given 
in Section 7. 

 
2. Framework of the proposed approach 

To generate arbitrary shape changes, modeling the 
initial object as a facetted representation, i.e. a 
polyhedron, lets decimation algorithms produce a 
simplified shape, i.e. a simplified polyhedron, using 
either vertex removal or edge collapse operators. Then, 
this simplified shape serves as basis for the FE mesh 
generation process. This allows the shape 
transformation to extract sub-domains expressing 
mechanical hypotheses where mechanical criteria can 
be applied. During this shape simplification process, 
no constraint is assigned to the triangles of the 
polyhedron in order to produce a simplified shape 
solely based on the simplification criteria. The 
equilaterality criterion being a FE solver constraint, it 
is not taken into account at that stage. 

This is the framework of the proposed approach and 
this helps to better characterize the user's hypotheses 
and their corresponding sub domains of the object. 

Then, the simplified shape serves as basis for the FE 
mesh generation process, taking into account the 
equilaterality, size constraints and other mesh 
generation constraints. This approach helps to better 
characterize the user's hypotheses with respect to the 
FE solving process. In the work described here, only 
the shape simplification phase is addressed. We show 
how the shape simplification can be powered up using 
GPU architecture. This performance increase 
combined with mechanical criteria provides an 
extended user’s control during the shape simplification 
process. 

During this phase, the main control criterion is 
based on the deviation of the simplified shape from the 
input one using a concept of variable envelope around 
the input shape. This concept drives the decimation 
criterion described in section 4.4. Indeed, the variable 
envelope is described in a discrete manner using 
spheres called error zones. These error zones are also 
related to the FE size that can be generated locally. 
Based on this relation the user, based on his/her know-
how, can tune the envelope to the FE size that will be 
used later to generate the FE mesh. Therefore, the 
envelope acts as a mean to identify the areas acting as 
details from FE point of view. 

 
3. Related Works 

There has been a substantial amount of research 
invested in developing efficient vertex removal 
algorithms [15]. Initially, Schroeder and Yamrom [19] 
proposed an algorithm for decimating manifold 
surfaces. Each vertex removal consists of deleting all 
triangles connected to a vertex and triangulating the 
boundary loop left by the removed triangles. Only 
vertex-removals that satisfy given decimation criteria 
are performed.  

Vertex removal algorithms come in many flavors 
[12], [8], [10], [4], which differ in how the order 
vertices are removed in, how the boundary loop is 
remeshed and the decimation criteria. Lee et al. [12] 
presented an algorithm called MAPS for 
simultaneously decimating and parameterizing a 
triangulation. Similarly to the method described above, 
MAPS removes vertices iteratively. In each iteration, 
an independent set of vertices are removed and each 
newly removed vertex is localized, i.e. parameterized, 
in the new triangulation. In order to prioritize the 
removal of vertices over flat regions, MAPS prefers to 
remove vertices with low curvature.  

Hoppe [10] proposed an algorithm for creating 
multi resolution models that can preserve predefined 



discontinuity curves. His method is based on 
computing an energy metric for each edge and then 
repeatedly performing the edge collapse with lowest 
energy. Garland and Heckbert [8] proposed an efficient 
method for performing mesh simplification. Their 
method uses quadric matrices to represent the 
simplification error. 

Cohen et al. [4] proposed to create a simplification 
envelope around the triangulation and tests that the 
simplified version is inside the envelope. The envelope 
is constructed in such a way that it guaranties that the 
topology of the model remains unchanged and that the 
mesh does not self-intersect.  

Foucault et al. [7], proposed to base the decimation 
criteria on mechanical as well as geometrical 
properties. This way, the decimation algorithm better 
preserves the mechanical properties of the model as 
prescribed by the user through a priori criteria. Thus, 
providing a decimated model more suited for FEA. In 
this paper, we address how to improve the performance 
of such algorithms using graphics hardware as a first 
step before extending it to even stronger computer 
demanding criteria.  

Botsch et al. [3] proposed to improve the 
performance of testing the decimation criteria by using 
GPUs. In their work, the decimation criterion is 
expressed as the distance from the decimated surface to 
the original one and this distance should not exceed a 
given tolerance. This criterion is checked by sampling 
a piecewise linear approximation to the signed distance 
field, and comparing the sampled value to the 
tolerance. In their work, the approximation to the 
signed distance field is computed using a CPU-based 
implementation of fast marching methods. The signed 
distance field is stored in a 3D texture in graphics 
memory. Then, the triangles that are to be checked are 
rendered using this texture. Their work is a first 
contribution to an efficiency increase in decimation 
operators through the use of GPUs.   

Adapting applications to take advantage of GPUs 
has become a popular research field, often referred to 
as “General-Purpose Computation using Graphics 
Hardware” (GPGPU). Among the applications that 
have been ported to GPU-based implementations, 
numerical solvers for PDEs are the most popular. This 
has led to the development of many different 
algorithms for solving linear systems, including the 
GPU-based implementation of the conjugate gradients 
method by Krüger and Westermann [11] an Bolz et al. 
[2]. GPUs have also successfully been used to solve 
PDEs using explicit schemes, e.g. Hagen et al. [9] For 
an overview over applications that have been 
successfully adapted for GPU-based implementation, 
we refer to Owens et al. [17].  

The progress in the field of GPGPU led our interest 
towards using the computational strength of GPUs in 
the preparation process of FE models. The goal of our 
work is to allow shape simplification using computer 
demanding criteria in interactive applications. Apart 
from Foucault et al., all the current simplification 
algorithms are focusing on one shape-based criterion 
only, while we focus on allowing several criteria to 
participate in the process.  

 
4. Algorithm Description 

We propose a hybrid GPU-CPU algorithm where 
the data structure holding the triangulation is 
maintained in system memory, while the majority of 
the calculations are performed by the GPU. This allows 
us to use any of the typical data structures for 
triangulations while taking advantage of the 
computational power of the GPU. We found that the 
most computationally intensive tasks are related to 
validation of the decimation criteria, and remeshing the 
boundary edge loop of the removed faces. This is 
especially true when mechanically-based criteria are 
considered in addition to shape-based ones. Therefore, 
we move these computations to the GPU to reduce the 
computation time. 

 

 
Figure 1. Flow chart of the application. The gray 
operations are performed by the GPU and the white 
ones on the CPU. 

 
4.1 Overview of the Algorithm 

The flow chart given in Figure 1 describes the main 
steps in our algorithm. Similarly to MAPS, the 
algorithm performs the simplification in several passes, 
where an independent set of vertices are considered for 



removal per simplification pass. At each simplification 
pass, the vertices that potentially can be removed are 
sorted based on discrete curvature values. Then, a 
greedy approach is used to create an independent set of 
the sorted vertices. Here, an independent set means that 
the set does not contain any of the 1-ring neighbors of 
any vertex in the same set. The vertices in the 
independent set are then candidates for removal, and 
will be removed if they meet certain given criteria. The 
use of an independent set ensures that the removal of 
any vertex in the set does not influence the removal of 
other vertices in the same set. 

Geometrical information about the candidate 
vertices and their 1-ring neighbors are collected and 
transferred to the GPU. Since this information may not 
fit in a texture, we split the candidate vertices into 
batches. Each batch is treated at the GPU, where the 
remeshing is computed and the criteria are evaluated. 
We will describe the GPU implementation in sections 
4.3 and 4.4. Based on the computations performed at 
the GPU, the CPU removes a subset of the candidate 
vertices from the data structure of the triangulation. 
 

 
Figure 2. Principle of the half edge collapse. 

 
4.2 Remeshing 

The GPUs have little support for complex data 
structures, therefore our algorithm is based on half-
edge collapse. This is a common remeshing scheme 
where one edge connected to the vertex is collapsed, 
i.e. the vertex is moved into the other vertex connected 
to the edge, as illustrated in Figure 2. The two triangles 
marked in the illustration collapses into two lines, and 
are removed from the triangulation. Such a choice is 
also compatible with FEA-based applications. Indeed, 
for most of the simplification passes the restriction in 
choice of remeshing imposed by the half-edge collapse 
does not affect the quality of the simplified model. 
However, with the range of applications considered 
here, the vertex removal process terminates either 
under distance-based criteria or mechanically-based 
ones rather than a targeted number of faces. This 
principle means that locally very coarse meshes can be 
produced while staying compatible with the 
mechanical requirements, e.g. local size of the FE 

required in the FE mesh generated after shape 
simplification process. 

During these last stages of iteration, accessing the 
widest possible range of remeshing schemes is critical 
to widen the diversity of shapes that can be reached at 
the end of this process. The use of more general 
remeshing schemes at the end of the process is 
important and has a significant effect on the overall 
shape transformation process. General remeshing 
schemes can avoid too early termination while 
satisfying the distance constraints between the initial 
and simplified shapes as well as other mechanical-
based criteria. Due to hardware limitations of the GPU, 
only half-edge collapse is performed at the GPU. Since 
general remeshing schemes only apply to a small 
subset of vertex removals, the time consumption is 
relatively small compared to the entire simplification 
process. Similarly, the half-edge collapse scheme 
addresses configurations equivalent to two-manifold 
ones. In the present contribution, it is considered that 
the non-manifold and surface boundary configurations 
are still handled by the CPU since they occur far less 
frequently than two-manifold ones. 

 
4.3 Choose Half-edge Collapse 

When a candidate vertex is considered for removal 
using half-edge collapse, one has the freedom to 
choose which edge to collapse. Our choice is based on 
properties relevant in a mechanical setting. Sharp 
edges are important properties of mechanical models 
and we therefore aim at keeping such edges in the 
approximated version. Therefore, we use the dot 
product between the normals of the two triangles at 
each side of an edge as the master value. Only the four 
edges with smallest master value are considered. Not 
only will this guide the remeshing process to the sharp 
edges, it also saves considerable amount of 
computation time when remeshing the neighborhood 
around a candidate vertex of high valence. 

A half-edge collapse can result in a topologically 
illegal configuration, such as two faces being mapped 
on top of each other. CPU-based implementations can 
check for such configurations, and change the 
remeshing scheme of the candidate vertex. This is not 
feasible in our GPU-implementation, because such 
tests require topological information outside the 1-ring 
neighborhood of the candidate vertex. We therefore 
use geometric properties within the 1-ring 
neighborhood to detect if it is likely that a double face 
occurs. The angle between the new and old triangle 
connected to each boundary edge is used to detect 
illegal configurations. If this angle is larger than a 
predefined tolerance for any of the edges, the 
remeshing is likely to be topologically illegal or 
geometrically unwanted, and is therefore marked as 



unwanted. We found that an angular tolerance of 80 
degrees detects almost all illegal situations, without 
preventing important vertex removals. This test does 
not replace a topology test performed at a later stage. 

During a half-edge collapse, one can easily compute 
geometrical properties like the local volume variation. 
The volume variation of the model is an important 
property when performing FEA. It is one of the a priori 
objective criteria that we have addressed. It is an 
objective criterion because it can be quantified before 
the FEA takes place and it conveys mechanical 
meaning because it is directly linked to the mass of the 
object. The mass is an important mechanical property 
when dynamic behavior simulation is addressed. 
Similarly, volume variation is linked to variations in 
the centre of gravity and hence it is effectively at the 
basis of several a priori mechanically-based criteria. 
Not only global volume variations, but also local ones 
are important to characterize and to offer to the 
mechanical engineer. This allows him/her to prescribe 
volume variations over a sub-domain of the object 
according to his/her mechanical hypotheses. Local 
evaluation of volume variation can be used also to 
display its distribution over the simplified shape, thus 
providing qualitative information regarding the 
distribution of the volume variation. The local volume 
change is therefore used to choose among the edges 
selected through the master property (large angle 
between the connected faces). 

 
4.4 Decimation Criteria 

A vertex is only removed if the half-edge collapse 
fulfils the decimation criteria described here. The two-
sided Hausdorff distance yields an accurate estimate of 
the geometrical simplification error. However, it is 
computationally intensive, and it is difficult to include 
this criterion in interactive applications where large 
models are used. A less computational intensive, but 
accurate criterion, is the one-sided Hausdorff distance 
from the original vertices to the decimated mesh. This 
is a common choice for simplification algorithms. It 
corresponds to assigning an error zone to each original 
vertex and testing if the simplified version intersects all 
error zones. Each error zone can be represented as a 
sphere with radius equal to the user-specified 
geometrical tolerance. However, error zones can also 
take mechanical criteria into account, by appropriately 
adjusting the radius of each sphere. To this end, the 
radii can be set equal to the FE map of sizes desired, 
enabling a priori information about the FEA to be used 
in the simplification process. In this case, the FE map 
of sizes is based on the user’s know-how about the 
mechanical behavior of the structure and his/her ability 
to locate stress gradients. Further, the sphere radii can 
be set automatically based on a posteriori FEA criteria. 

In this case, the sizes of the error zones reflect the sizes 
of the finite elements required to match the analysis 
accuracy specified by the user. The sphere sizes can be 
defined using a strain energy error estimator based on a 
previous analysis to provide a new model for better 
FEA results [6], [5]. Here, the FE map of sizes is 
considered to be set up a priori only. 

Each error zone is associated with one vertex and 
does not become active until the associated vertex is 
removed. The decimation criterion is satisfied if each 
active error zone intersects at least one triangle. The 
error zone is then assigned to one of the intersecting 
triangles. Note that the number of active error zones 
does not exceed the number of original vertices. This 
guarantees that the number of intersection tests to be 
performed at each simplification pass does not increase 
during the simplification process. 

The use of error zones to incorporate a priori 
mechanical criteria allows the decimation process to 
take into account some of the aspects of FEA. 
However, it does not give the user objective 
information of how well the mechanical properties of 
the simplified version correspond to the original 
model. To incorporate this kind of information, we 
keep track of the global variation of volume. Since the 
local volume variation is already computed, it is only a 
matter of adding these values, and compare with the 
user defined global volume tolerance. 

The decimation criteria performed by the GPU are 
restricted to be dependent on information in the 1-ring 
neighborhood of the candidate vertex. Any global 
criterion, such as variation of volume, must therefore 
be evaluated at the CPU using the volume calculations 
from the GPU. Further, topological criteria must be 
performed to ensure that the topology of the object is 
maintained. If a half-edge collapse is found to be 
topologically illegal it is omitted. Otherwise, if the 
candidate vertex has passed all tests described here, it 
is removed from the triangulation.  

 
5. GPU Implementation  

We will now describe the main features of our GPU 
implementation and the data structures used. Before 
describing the implementation, we provide a short 
description of the GPU and the programming model 
we used.  

Since the GPU is designed to render triangulations, 
one might believe that the 3D capabilities can be used 
when implementing the decimation algorithm. 
However, the GPU is only designed to create 2D 
images of 3D models, and is not able to create 3D 
models. We therefore use the standard GPGPU 
approach, where the stream processing programming 
model is used.  



Due to current limitations regarding the instruction 
set and number of registers, our GPU-implementation 
is divided into several steps. Each step is implemented 
in one or more rendering passes. 

 
5.1. Graphical Pipeline 

 The GPU is designed to perform a sequence of 
tasks called the graphical pipeline. The graphical 
pipeline has four main stages: 

• Vertex processing, where each vertex of the 3D 
model is transformed into the appropriate 
coordinate system. 

• Rasterization, which determines which pixels 
are “hit” by a given triangle. From this point, 
each pixel is treated individually. 

• Fragment processing, where the color of each 
pixel is calculated. 

• Framebuffer operations, updates the 
framebuffer with the color, depth etc. from the 
incoming pixels.  

A detailed description can be found in [20].  
Recently, the vertex processor and the fragment 

processor have become fully programmable. Both the 
vertex processor and the fragment processor are data-
parallel processors. The high performance of the 
processors is mainly because they contain a large 
number of pipelines that treat vertices/fragments 
simultaneously. Pixels treated simultaneously are 
treated in a Single Instruction Multiple Data (SIMD) 
manner. In this setting this means that exactly the same 
sequence of instructions are performed for all the 
pixels. This is important to keep in mind, especially 
when the fragment program includes dynamic flow 
control.  

The fragment processor has access to data through 
one, two, or three dimensional arrays called textures. 
The framebuffer can be read as a texture at later 
rendering passes. 

 
5.2. Programming Model 

In the stream processing programming model input 
and output data streams and a computational kernel are 
specified. The kernel is then executed for all the 
elements in the data stream. Since the same kernel 
(fragment program) is executed for all the data 
elements (pixels), the stream processing programming 
model is well suited for GPGPU applications.  
Example 1: Adding two matrices A and B, and storing 
the result in matrix C.  

On the CPU, this is implemented as a double for-
loop, which traverses all elements in the matrices and 
performs the computations sequentially, viz. 
// instruction stream 
for(i=0; i<numRows; i++) 

  for(j=0; j<numCols; j++) 
    C[i][j] = A[i][j] + B[i][j]; 
In stream processing, we first specify the two matrices 
we want to add and the matrix we want to store the 
result in. The next step is to load the computational 
kernel, before finally the computations are executed, 
viz. 
// data stream 
setInputArrays(A, B); 
setOutputArrays(C); 
loadKernel( matrix_sum_kernel ); 
execute(); 

Recently, the two major GPU vendors have released 
programming libraries that allows the GPU to be used 
as a computational resource, without going through the 
graphical system. We have chosen not to use these 
libraries at the moment, because they target specific 
hardware. However, we expect to port the 
simplification algorithm to take advantage of such 
APIs when they are more mature. There are currently 
several APIs being developed which allow the 
programmer to program against a stream processing 
programming model and all communication with the 
GPU are hidden from the programmer. Such libraries 
are likely to reduce the development time for GPGPU 
algorithms, and thereby further increase the interest for 
such implementations. 

 
5.3. Data Structures 

We use a standard C++ data structure for 
maintaining the triangulation in system memory. This 
data structure is used to retrieve the necessary 
information of all candidate vertices, which is then sent 
to the graphics memory as textures.  

The two main textures are called positionTex, and 
neighborsTex, which contain the positions of the 
candidate vertices and their neighbors. Kernels used to 
determine the remeshing scheme and evaluate 
decimation criteria loop over the neighboring vertices. 
To ensure that vertices treated simultaneously spend 
the same number of iterations in these loops, the 
candidate vertices are grouped according to their 
valence. All vertices in the same row of positionTex 
are of the same valence. This simplifies the 
implementation and improves performance. Most the 
computations are performed by rendering into a two 
dimensional framebuffer of the same dimensions as 
positionTex. Each pixel in the framebuffer represents 
one vertex removal.  
Example 2: 

In this example the connectivity of the triangulation 
is represented as an adjacency list. For simplicity, only 
a subset of the vertices is presented here, and only the 
indices are given here.  



Table 1: Adjacency list 
Index Valence Discrete 

curvature 
Neighbors 

1 3 0.1 16, 7, 8 
2 6 0.11 10, 3, 19, 18, 17, 9 
3 5 0.12 10, 11, 4, 19, 2 
4 7 0.13 11, 12, 16, 5, 20, 19, 3 
5 6 0.15 13, 16, 6, 22, 20, 4 
6 6 0.3 16, 7, 15, 23, 22, 5 

Note that in Table 1 the vertices are already sorted 
according to their discrete curvature. The independent 
set will then consist of the vertices: 1, 2, 4 and 6, 
which become the candidate vertices. The candidate 
vertices are then grouped according to their valence, 
before the textures are created. The first row contains 
the vertex 1, which is the only candidate vertex of 
valence 3. The second row contains the vertices of 
valence 6, namely vertices 2 and 6, and the last row 
only contains vertex 4. Note that int thetables below 
the indices of the vertices are given instead of the 
positions. 

Table 2: indices to the vertices in positionTex.  
4  
2 6 
1  

In the neighborTex, the positions of the vertices 
adjacent to the candidate vertices are stored. Each row 
contains the neighbors to the candidate vertices stored 
at the corresponding row in the position texture. Table 
2 and Table 3 show the contents of positionTex  and 
neighborTex respecivly. 

Table 3: indices to the vertices in neighborTex 
11 12 16 5 20 19 3 
10 3 19 18 17 9 16 7 15 23 22 5 
17 7 8 

 
5.4 Ordering the Edges 

A kernel computing the master values described in 
Section 4.3 is executed for all candidate vertices with 
valence at least equal to four. The four edges with 
lowest master value are candidates for half-edge 
collapse and their indices are returned from the kernel. 
Since we need to compute the volume variation for 
each of the potential edges, we perform the following 
computations in a framebuffer where each pixel 
corresponds to a potential edge. To simplify the 
implementation, we first rotate the list of neighbors, 
such that the destination vertex in the half-edge 
collapse is placed first of the neighboring vertices. 
With these preparations the local volume variation 
associated with each potential edge can efficiently be 
computed in a fragment program. The only remaining 
operation before choosing which edges to collapse is to 
compute the angles between the old and new triangles, 
to detect flipped triangles. When the edges to collapse 

are chosen, we finally rotate  neighborTex, according 
to the chosen edges. 
Example 2 continued: 
To illustrate the rotation, Table 4 show neighborTex 
after the reordering. Given the half-edge collapses 
where vertex 1 is collapsed into vertex 7, 2 into 3, 6 
into 16 and 4 into 11. The first element of the first row 
is the destination vertex for the half-edge collapse for 
vertex 1. Therefore, the neighbor vertices to vertex 1 
are rotated one element to the left, viz.  

Table 4: neighborTex after reordering. 
11 12 16 5 20 19 3      
3 19 18 17 9 10 16 7 15 23 22 5 
7 8 16          

 
5.5. Evaluation of Decimation Criteria 

We focused on the decimation criterion based on 
error zones, because this allows the use of both a priori 
and a posteriori criteria. During the first simplification 
pass, i.e. before any vertex is removed, there is only 
one error zone per candidate vertex. This error zone is 
then attached to one of the new triangles. During later 
simplification passes error zones originating from 
already removed vertices must be validated. 

To this end, the intersection tests are performed by 
two kernels called intersect2D and intersect3D. First, 
intersect2D performs a simple 2D intersection test. 
Then, intersect3D performs the intersection test for the 
triangle-sphere pairs that passes the 2D test. The 
intersect2D kernel is executed for each triangle and 
loops over the spheres assigned to the candidate vertex. 
The return value is an integer value, where each bit 
represents an intersection test and is set to one if the 
box test is successful. Since most GPUs today do not 
support integral data types or bitwise operations, this is 
implemented using floating point arithmetic. Then, 
intersect3D uses the bit pattern when looping over the 
spheres that potentially intersect the triangle. A large 
difference in the number of associated error zones will 
lead to poor performance, due to the SIMD 
architecture. Therefore, candidate vertices with a high 
number of associated error zones are repeated in 
positionTex, with different error zones.  

Finally, a kernel called concludeKernel checks the 
results from the intersection tests, verifying that each 
sphere intersects at least one triangle. Otherwise, the 
candidate vertex is marked as not removable. The 
output from this kernel is the index to the destination 
vertex of the edge collapse, and the volume of the 
approximation error associated with this half-edge 
collapse. If the candidate vertex is marked as not 
removable, a negative index is returned. 

 



5.6. CPU Treatment 
The output from concludeKernel and intersect3D 

are read back to system memory for the final 
processing. The decimation criteria performed by the 
GPU are restricted to be dependent on information in 
the 1-ring neighborhood of the candidate vertex. Any 
global criterion, such as total variation of volume, must 
therefore be evaluated at this stage. Further, tests are 
performed to ensure that the topology of the model is 
maintained. Finally, the triangulation is updated and 
the assigned error zones are reassigned to new faces 
according to the results from intersect3D.  
 

 

 
Figure 3: Example highlighting the effect of 
variable deviation distance on the shape 
simplification process. a) the initial model shaded 
and tessellated, b) the map of sizes used for the 
simplification process, c) the resulting model 
shaded and tessellated where larger details have 
been removed. 

6. Results 
In figure 3, an example is given to highlight the 

influence of the error zones on the shape simplification 
process. The variable size of error zones interactively 
specified by the user helps identify specific sub-
domains as details that will be removed. Such a 
variable envelope adds further flexibility to meet the 
user’s requirements.  

a)  

b)

c)  
Figure 4: Original models (a), simplified models 
with active global volume criterion (b) and without 
active global volume criterion (c). Fandisk models 
are shown to the left, and blade models to the right.  

The examples presented here are decimated with 
our GPU-accelerated method. Figure 4 shows how 
changing the tolerance for global volume variation 
influences the simplified model.  

The performance advantages of using the GPU are 
illustrated in Table 5, which shows that our GPU 
version is 8 times faster than our CPU version for large 
models. The performance improvement with our GPU 

a) 

b) 

c) 

Larger details 



version is reduced for smaller models, but the 
algorithm outperforms the CPU version even for a 
model with only 12000 triangles. The models were 
processed using an AMD Athlon 4400+ CPU and a 
NVIDIA 7800GT GPU. 

Table 5: Runtimes for simplification of mechanical 
models. The error zones are given relative to the 
length of the diagonal of the bounding box, and the 
volume is relative to the bounding box. 
Model Initial 

#tris 
Final 
#tris 
 

Error 
zone 

Volume 
tolerance 

CPU 
time 
(s) 

GPU 
time 
(s) 

Blade 1765388 10818 1.3% 1.7e-6% 71.4 9.7 
Blade 1765388 25830 1.3% 1.7e-5% 87.6 10.8 
Fandisk 12946 148 1.3% 1.5e1% 0.583 0.21 
Fandisk 12946 128 1.3% 1.5e-3% 0.57 0.21 
 
 
7. Concluding Remarks 

In this paper we have presented a hybrid GPU-CPU 
approach for shape simplification of objects dedicated 
to mechanical applications. The computational power 
of the GPUs makes it feasible to include both 
geometrical and mechanical criteria. These criteria are 
too computationally expensive for pure CPU 
implementations to preserve the user’s interactivity. 
Since the candidate vertices are split into batches, the 
independent set of vertices must be created by the 
CPU. This prevents us from computing the 
independent sets on the GPU without extra data 
transfer between the graphics and system memory.  

The current implementation is based on accessing 
the GPU through OpenGL. We expect a performance 
improvement if it is ported to an API that allows the 
GPU to be used without going through the graphical 
system. Such APIs can increase the performance of the 
application and reduce the development time, making 
approaches like the one presented here more attractive 
in commercial systems. 

The proposed approach has highlighted the 
efficiency of the GPU architecture where significant 
speed-up factors can be reached. Similarly, the a priori 
criteria implemented here is a first step toward the 
development of more computationally demanding 
criterion. The next step of the project will be to include 
stiffness based criteria involving computation and 
propagation of stiffness matrices.  

The use of mechanical properties during the 
simplification process reduces the time the engineers 
spend preparing models for FEA, and give them 
objective information about the impact of their 
modifications or hypotheses. This is also a contribution 
to new tools helping engineers to monitor 
quantitatively their structure simulations. 
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