
GPU-Accelerated Shape Simplification for Mechanical-Based Applications

Jon Hjelmervik
SINTEF ICT

Postbox 124, Blindern
0314 OSLO

jami@sintef.no

Jean-Claude Léon
ENSHMG-INPG Laboratory G-SCOP

Domaine Universitaire, BP 53
38041 GRENOBLE Cedex 9

Jean-Claude.Leon@hmg.inpg.fr

Abstract

 In this paper we present a GPU-based method for
removing shape details of 3D models. 3D models used
in Finite Element Analysis (FEA) are often either
constructed for the purpose of manufacturing, or a
result of 3D scanning. The models therefore contain
shape details that are neither important for FEA nor
compatible with the mechanical hypotheses. Vertex
removal is a popular method for removing geometrical
details where vertices are removed one by one,
provided certain constraints are satisfied. The
constraints can either be based purely on geometrical
properties, or also on mechanical ones.

 The computations required in this process can be
time consuming, especially if mechanical constraints
are involved. The main idea behind our method is to
perform the computations for all the vertices in
parallel using graphics hardware, and then use the
CPU to maintain the data structure representing the
triangulation.

 As a result, simplification functions can stay
interactive while incorporating complementary
mechanically-based criteria in addition to the
geometric ones involved in shape transformation.

1. Introduction

3D models used as input of FEA are often
constructed for the purposes of manufacturing, and
therefore contain numerous details that are part of the
component “as-manufactured”. To meet the objectives
of the component behavior simulation and reduce the
time spent in the FEA process, it is required that these
details are removed. Expressing mechanical
hypotheses defining the simplification of an analysis
domain is mandatory for current simulations in the
context of FE analyses. The corresponding shape
adaptation for FE models is achieved by the
elimination of shape sub-domains when their presence
has no effect or, possibly, a weak effect on the
mechanical behavior while imposing an undesirable

local FE mesh density. Such sub-domains are referred
to as details since they incorporate simultaneously
mechanical as well as geometric meanings. Examples
of these details include not only fillets, rounds which
remove sharp edges for manufacturing purposes, but
also shape features such as holes, small protrusions,
etc.

Although modern CAD systems tend to integrate
FEA tools in a design environment, generating FE
models from design models remains tedious. In
general, there is little or no feedback from CAD
systems regarding the impact of modifications with
respect to mechanical criteria. This is a major issue for
integration of FEA into product design, and for
development of objective criteria and/or constraints to
help engineers prepare FE models. Several approaches
have been proposed to ease the preparation of the FE
models through detail removal operators [1], [18], [21].
Most of these approaches are based on NURBS model
transformations, which have not led to strongly
automated processes.

Another approach is to create an initial FE mesh
prior to removing the unwanted details [16], [21]. In
this approach, triangulation subsets forming details are
removed by performing well-known mesh transitions,
e.g. collapsing the faces of a tetrahedron to remove the
element. However, these transformations are directly
performed on a FE mesh and are not able to track
shape changes. Thus, it is not possible to apply
objective criteria to evaluate the mechanical influence
of the induced shape transformations. In this setting,
objective criteria are quantitative and based on input
parameters of the shape, without contribution from the
engineer's know-how.

Yet another approach separates the shape
transformation stage from the FE mesh generation
stage [7], [13], [14]. Modeling the initial shape as a
polyhedron represented by a triangulation allows
vertex removal or edge collapse operators to be used to
simplify the model. This allows the generation of
arbitrary shape changes. The method proposed here is
based on this approach.

Vertex removal operators can be time consuming.
In addition, if local mechanical criteria are included in
the shape transformation, the consumption of each
elementary operation is further increased. Thus, the
detail removal processes may be too time consuming to
be suitable for interactive applications. In this paper we
present a method that uses graphics hardware to
improve the performance of the vertex removal, even
when criteria are associated with the shape
transformation process. The main idea behind our
method is to perform computations for all the vertices
in parallel using graphics hardware, and then determine
which vertices to remove.

After the introduction of programmable Graphics
Processor Units (GPUs), only a few years ago, there
has been an increasing interest for using GPUs for
computations. The popularity is not only due to the
performance of current GPUs, but also to the expected
increase in performance difference between CPUs and
GPUs. In this paper we will therefore study whether
the GPU can be used to reduce the computational time
for mesh simplification and which mechanically-based
criteria can be associated with the local shape-change
operators.

The paper is structured as follows. Section 2
summarizes the main characteristics of the proposed
approach, section 3 reviews the works related to the
current proposal. Then, section 4 describes the
structure of the proposed algorithm, highlighting the
overall architecture and the main steps of the shape
transformation process. Section 5 gives a short
introduction to GPUs. Furthermore it describes the data
structures used in our method and the compromise
between the desired efficiency improvement and the
restrictions due to the GPU. Section 6 introduces
numerical results, before concluding remarks are given
in Section 7.

2. Framework of the proposed approach

To generate arbitrary shape changes, modeling the
initial object as a facetted representation, i.e. a
polyhedron, lets decimation algorithms produce a
simplified shape, i.e. a simplified polyhedron, using
either vertex removal or edge collapse operators. Then,
this simplified shape serves as basis for the FE mesh
generation process. This allows the shape
transformation to extract sub-domains expressing
mechanical hypotheses where mechanical criteria can
be applied. During this shape simplification process,
no constraint is assigned to the triangles of the
polyhedron in order to produce a simplified shape
solely based on the simplification criteria. The
equilaterality criterion being a FE solver constraint, it
is not taken into account at that stage.

This is the framework of the proposed approach and
this helps to better characterize the user's hypotheses
and their corresponding sub domains of the object.

Then, the simplified shape serves as basis for the FE
mesh generation process, taking into account the
equilaterality, size constraints and other mesh
generation constraints. This approach helps to better
characterize the user's hypotheses with respect to the
FE solving process. In the work described here, only
the shape simplification phase is addressed. We show
how the shape simplification can be powered up using
GPU architecture. This performance increase
combined with mechanical criteria provides an
extended user’s control during the shape simplification
process.

During this phase, the main control criterion is
based on the deviation of the simplified shape from the
input one using a concept of variable envelope around
the input shape. This concept drives the decimation
criterion described in section 4.4. Indeed, the variable
envelope is described in a discrete manner using
spheres called error zones. These error zones are also
related to the FE size that can be generated locally.
Based on this relation the user, based on his/her know-
how, can tune the envelope to the FE size that will be
used later to generate the FE mesh. Therefore, the
envelope acts as a mean to identify the areas acting as
details from FE point of view.

3. Related Works

There has been a substantial amount of research
invested in developing efficient vertex removal
algorithms [15]. Initially, Schroeder and Yamrom [19]
proposed an algorithm for decimating manifold
surfaces. Each vertex removal consists of deleting all
triangles connected to a vertex and triangulating the
boundary loop left by the removed triangles. Only
vertex-removals that satisfy given decimation criteria
are performed.

Vertex removal algorithms come in many flavors
[12], [8], [10], [4], which differ in how the order
vertices are removed in, how the boundary loop is
remeshed and the decimation criteria. Lee et al. [12]
presented an algorithm called MAPS for
simultaneously decimating and parameterizing a
triangulation. Similarly to the method described above,
MAPS removes vertices iteratively. In each iteration,
an independent set of vertices are removed and each
newly removed vertex is localized, i.e. parameterized,
in the new triangulation. In order to prioritize the
removal of vertices over flat regions, MAPS prefers to
remove vertices with low curvature.

Hoppe [10] proposed an algorithm for creating
multi resolution models that can preserve predefined

discontinuity curves. His method is based on
computing an energy metric for each edge and then
repeatedly performing the edge collapse with lowest
energy. Garland and Heckbert [8] proposed an efficient
method for performing mesh simplification. Their
method uses quadric matrices to represent the
simplification error.

Cohen et al. [4] proposed to create a simplification
envelope around the triangulation and tests that the
simplified version is inside the envelope. The envelope
is constructed in such a way that it guaranties that the
topology of the model remains unchanged and that the
mesh does not self-intersect.

Foucault et al. [7], proposed to base the decimation
criteria on mechanical as well as geometrical
properties. This way, the decimation algorithm better
preserves the mechanical properties of the model as
prescribed by the user through a priori criteria. Thus,
providing a decimated model more suited for FEA. In
this paper, we address how to improve the performance
of such algorithms using graphics hardware as a first
step before extending it to even stronger computer
demanding criteria.

Botsch et al. [3] proposed to improve the
performance of testing the decimation criteria by using
GPUs. In their work, the decimation criterion is
expressed as the distance from the decimated surface to
the original one and this distance should not exceed a
given tolerance. This criterion is checked by sampling
a piecewise linear approximation to the signed distance
field, and comparing the sampled value to the
tolerance. In their work, the approximation to the
signed distance field is computed using a CPU-based
implementation of fast marching methods. The signed
distance field is stored in a 3D texture in graphics
memory. Then, the triangles that are to be checked are
rendered using this texture. Their work is a first
contribution to an efficiency increase in decimation
operators through the use of GPUs.

Adapting applications to take advantage of GPUs
has become a popular research field, often referred to
as “General-Purpose Computation using Graphics
Hardware” (GPGPU). Among the applications that
have been ported to GPU-based implementations,
numerical solvers for PDEs are the most popular. This
has led to the development of many different
algorithms for solving linear systems, including the
GPU-based implementation of the conjugate gradients
method by Krüger and Westermann [11] an Bolz et al.
[2]. GPUs have also successfully been used to solve
PDEs using explicit schemes, e.g. Hagen et al. [9] For
an overview over applications that have been
successfully adapted for GPU-based implementation,
we refer to Owens et al. [17].

The progress in the field of GPGPU led our interest
towards using the computational strength of GPUs in
the preparation process of FE models. The goal of our
work is to allow shape simplification using computer
demanding criteria in interactive applications. Apart
from Foucault et al., all the current simplification
algorithms are focusing on one shape-based criterion
only, while we focus on allowing several criteria to
participate in the process.

4. Algorithm Description

We propose a hybrid GPU-CPU algorithm where
the data structure holding the triangulation is
maintained in system memory, while the majority of
the calculations are performed by the GPU. This allows
us to use any of the typical data structures for
triangulations while taking advantage of the
computational power of the GPU. We found that the
most computationally intensive tasks are related to
validation of the decimation criteria, and remeshing the
boundary edge loop of the removed faces. This is
especially true when mechanically-based criteria are
considered in addition to shape-based ones. Therefore,
we move these computations to the GPU to reduce the
computation time.

Figure 1. Flow chart of the application. The gray
operations are performed by the GPU and the white
ones on the CPU.

4.1 Overview of the Algorithm

The flow chart given in Figure 1 describes the main
steps in our algorithm. Similarly to MAPS, the
algorithm performs the simplification in several passes,
where an independent set of vertices are considered for

removal per simplification pass. At each simplification
pass, the vertices that potentially can be removed are
sorted based on discrete curvature values. Then, a
greedy approach is used to create an independent set of
the sorted vertices. Here, an independent set means that
the set does not contain any of the 1-ring neighbors of
any vertex in the same set. The vertices in the
independent set are then candidates for removal, and
will be removed if they meet certain given criteria. The
use of an independent set ensures that the removal of
any vertex in the set does not influence the removal of
other vertices in the same set.

Geometrical information about the candidate
vertices and their 1-ring neighbors are collected and
transferred to the GPU. Since this information may not
fit in a texture, we split the candidate vertices into
batches. Each batch is treated at the GPU, where the
remeshing is computed and the criteria are evaluated.
We will describe the GPU implementation in sections
4.3 and 4.4. Based on the computations performed at
the GPU, the CPU removes a subset of the candidate
vertices from the data structure of the triangulation.

Figure 2. Principle of the half edge collapse.

4.2 Remeshing

The GPUs have little support for complex data
structures, therefore our algorithm is based on half-
edge collapse. This is a common remeshing scheme
where one edge connected to the vertex is collapsed,
i.e. the vertex is moved into the other vertex connected
to the edge, as illustrated in Figure 2. The two triangles
marked in the illustration collapses into two lines, and
are removed from the triangulation. Such a choice is
also compatible with FEA-based applications. Indeed,
for most of the simplification passes the restriction in
choice of remeshing imposed by the half-edge collapse
does not affect the quality of the simplified model.
However, with the range of applications considered
here, the vertex removal process terminates either
under distance-based criteria or mechanically-based
ones rather than a targeted number of faces. This
principle means that locally very coarse meshes can be
produced while staying compatible with the
mechanical requirements, e.g. local size of the FE

required in the FE mesh generated after shape
simplification process.

During these last stages of iteration, accessing the
widest possible range of remeshing schemes is critical
to widen the diversity of shapes that can be reached at
the end of this process. The use of more general
remeshing schemes at the end of the process is
important and has a significant effect on the overall
shape transformation process. General remeshing
schemes can avoid too early termination while
satisfying the distance constraints between the initial
and simplified shapes as well as other mechanical-
based criteria. Due to hardware limitations of the GPU,
only half-edge collapse is performed at the GPU. Since
general remeshing schemes only apply to a small
subset of vertex removals, the time consumption is
relatively small compared to the entire simplification
process. Similarly, the half-edge collapse scheme
addresses configurations equivalent to two-manifold
ones. In the present contribution, it is considered that
the non-manifold and surface boundary configurations
are still handled by the CPU since they occur far less
frequently than two-manifold ones.

4.3 Choose Half-edge Collapse

When a candidate vertex is considered for removal
using half-edge collapse, one has the freedom to
choose which edge to collapse. Our choice is based on
properties relevant in a mechanical setting. Sharp
edges are important properties of mechanical models
and we therefore aim at keeping such edges in the
approximated version. Therefore, we use the dot
product between the normals of the two triangles at
each side of an edge as the master value. Only the four
edges with smallest master value are considered. Not
only will this guide the remeshing process to the sharp
edges, it also saves considerable amount of
computation time when remeshing the neighborhood
around a candidate vertex of high valence.

A half-edge collapse can result in a topologically
illegal configuration, such as two faces being mapped
on top of each other. CPU-based implementations can
check for such configurations, and change the
remeshing scheme of the candidate vertex. This is not
feasible in our GPU-implementation, because such
tests require topological information outside the 1-ring
neighborhood of the candidate vertex. We therefore
use geometric properties within the 1-ring
neighborhood to detect if it is likely that a double face
occurs. The angle between the new and old triangle
connected to each boundary edge is used to detect
illegal configurations. If this angle is larger than a
predefined tolerance for any of the edges, the
remeshing is likely to be topologically illegal or
geometrically unwanted, and is therefore marked as

unwanted. We found that an angular tolerance of 80
degrees detects almost all illegal situations, without
preventing important vertex removals. This test does
not replace a topology test performed at a later stage.

During a half-edge collapse, one can easily compute
geometrical properties like the local volume variation.
The volume variation of the model is an important
property when performing FEA. It is one of the a priori
objective criteria that we have addressed. It is an
objective criterion because it can be quantified before
the FEA takes place and it conveys mechanical
meaning because it is directly linked to the mass of the
object. The mass is an important mechanical property
when dynamic behavior simulation is addressed.
Similarly, volume variation is linked to variations in
the centre of gravity and hence it is effectively at the
basis of several a priori mechanically-based criteria.
Not only global volume variations, but also local ones
are important to characterize and to offer to the
mechanical engineer. This allows him/her to prescribe
volume variations over a sub-domain of the object
according to his/her mechanical hypotheses. Local
evaluation of volume variation can be used also to
display its distribution over the simplified shape, thus
providing qualitative information regarding the
distribution of the volume variation. The local volume
change is therefore used to choose among the edges
selected through the master property (large angle
between the connected faces).

4.4 Decimation Criteria

A vertex is only removed if the half-edge collapse
fulfils the decimation criteria described here. The two-
sided Hausdorff distance yields an accurate estimate of
the geometrical simplification error. However, it is
computationally intensive, and it is difficult to include
this criterion in interactive applications where large
models are used. A less computational intensive, but
accurate criterion, is the one-sided Hausdorff distance
from the original vertices to the decimated mesh. This
is a common choice for simplification algorithms. It
corresponds to assigning an error zone to each original
vertex and testing if the simplified version intersects all
error zones. Each error zone can be represented as a
sphere with radius equal to the user-specified
geometrical tolerance. However, error zones can also
take mechanical criteria into account, by appropriately
adjusting the radius of each sphere. To this end, the
radii can be set equal to the FE map of sizes desired,
enabling a priori information about the FEA to be used
in the simplification process. In this case, the FE map
of sizes is based on the user’s know-how about the
mechanical behavior of the structure and his/her ability
to locate stress gradients. Further, the sphere radii can
be set automatically based on a posteriori FEA criteria.

In this case, the sizes of the error zones reflect the sizes
of the finite elements required to match the analysis
accuracy specified by the user. The sphere sizes can be
defined using a strain energy error estimator based on a
previous analysis to provide a new model for better
FEA results [6], [5]. Here, the FE map of sizes is
considered to be set up a priori only.

Each error zone is associated with one vertex and
does not become active until the associated vertex is
removed. The decimation criterion is satisfied if each
active error zone intersects at least one triangle. The
error zone is then assigned to one of the intersecting
triangles. Note that the number of active error zones
does not exceed the number of original vertices. This
guarantees that the number of intersection tests to be
performed at each simplification pass does not increase
during the simplification process.

The use of error zones to incorporate a priori
mechanical criteria allows the decimation process to
take into account some of the aspects of FEA.
However, it does not give the user objective
information of how well the mechanical properties of
the simplified version correspond to the original
model. To incorporate this kind of information, we
keep track of the global variation of volume. Since the
local volume variation is already computed, it is only a
matter of adding these values, and compare with the
user defined global volume tolerance.

The decimation criteria performed by the GPU are
restricted to be dependent on information in the 1-ring
neighborhood of the candidate vertex. Any global
criterion, such as variation of volume, must therefore
be evaluated at the CPU using the volume calculations
from the GPU. Further, topological criteria must be
performed to ensure that the topology of the object is
maintained. If a half-edge collapse is found to be
topologically illegal it is omitted. Otherwise, if the
candidate vertex has passed all tests described here, it
is removed from the triangulation.

5. GPU Implementation

We will now describe the main features of our GPU
implementation and the data structures used. Before
describing the implementation, we provide a short
description of the GPU and the programming model
we used.

Since the GPU is designed to render triangulations,
one might believe that the 3D capabilities can be used
when implementing the decimation algorithm.
However, the GPU is only designed to create 2D
images of 3D models, and is not able to create 3D
models. We therefore use the standard GPGPU
approach, where the stream processing programming
model is used.

Due to current limitations regarding the instruction
set and number of registers, our GPU-implementation
is divided into several steps. Each step is implemented
in one or more rendering passes.

5.1. Graphical Pipeline

 The GPU is designed to perform a sequence of
tasks called the graphical pipeline. The graphical
pipeline has four main stages:

• Vertex processing, where each vertex of the 3D
model is transformed into the appropriate
coordinate system.

• Rasterization, which determines which pixels
are “hit” by a given triangle. From this point,
each pixel is treated individually.

• Fragment processing, where the color of each
pixel is calculated.

• Framebuffer operations, updates the
framebuffer with the color, depth etc. from the
incoming pixels.

A detailed description can be found in [20].
Recently, the vertex processor and the fragment

processor have become fully programmable. Both the
vertex processor and the fragment processor are data-
parallel processors. The high performance of the
processors is mainly because they contain a large
number of pipelines that treat vertices/fragments
simultaneously. Pixels treated simultaneously are
treated in a Single Instruction Multiple Data (SIMD)
manner. In this setting this means that exactly the same
sequence of instructions are performed for all the
pixels. This is important to keep in mind, especially
when the fragment program includes dynamic flow
control.

The fragment processor has access to data through
one, two, or three dimensional arrays called textures.
The framebuffer can be read as a texture at later
rendering passes.

5.2. Programming Model

In the stream processing programming model input
and output data streams and a computational kernel are
specified. The kernel is then executed for all the
elements in the data stream. Since the same kernel
(fragment program) is executed for all the data
elements (pixels), the stream processing programming
model is well suited for GPGPU applications.
Example 1: Adding two matrices A and B, and storing
the result in matrix C.

On the CPU, this is implemented as a double for-
loop, which traverses all elements in the matrices and
performs the computations sequentially, viz.
// instruction stream
for(i=0; i<numRows; i++)

 for(j=0; j<numCols; j++)
 C[i][j] = A[i][j] + B[i][j];
In stream processing, we first specify the two matrices
we want to add and the matrix we want to store the
result in. The next step is to load the computational
kernel, before finally the computations are executed,
viz.
// data stream
setInputArrays(A, B);
setOutputArrays(C);
loadKernel(matrix_sum_kernel);
execute();

Recently, the two major GPU vendors have released
programming libraries that allows the GPU to be used
as a computational resource, without going through the
graphical system. We have chosen not to use these
libraries at the moment, because they target specific
hardware. However, we expect to port the
simplification algorithm to take advantage of such
APIs when they are more mature. There are currently
several APIs being developed which allow the
programmer to program against a stream processing
programming model and all communication with the
GPU are hidden from the programmer. Such libraries
are likely to reduce the development time for GPGPU
algorithms, and thereby further increase the interest for
such implementations.

5.3. Data Structures

We use a standard C++ data structure for
maintaining the triangulation in system memory. This
data structure is used to retrieve the necessary
information of all candidate vertices, which is then sent
to the graphics memory as textures.

The two main textures are called positionTex, and
neighborsTex, which contain the positions of the
candidate vertices and their neighbors. Kernels used to
determine the remeshing scheme and evaluate
decimation criteria loop over the neighboring vertices.
To ensure that vertices treated simultaneously spend
the same number of iterations in these loops, the
candidate vertices are grouped according to their
valence. All vertices in the same row of positionTex
are of the same valence. This simplifies the
implementation and improves performance. Most the
computations are performed by rendering into a two
dimensional framebuffer of the same dimensions as
positionTex. Each pixel in the framebuffer represents
one vertex removal.
Example 2:

In this example the connectivity of the triangulation
is represented as an adjacency list. For simplicity, only
a subset of the vertices is presented here, and only the
indices are given here.

Table 1: Adjacency list
Index Valence Discrete

curvature
Neighbors

1 3 0.1 16, 7, 8
2 6 0.11 10, 3, 19, 18, 17, 9
3 5 0.12 10, 11, 4, 19, 2
4 7 0.13 11, 12, 16, 5, 20, 19, 3
5 6 0.15 13, 16, 6, 22, 20, 4
6 6 0.3 16, 7, 15, 23, 22, 5

Note that in Table 1 the vertices are already sorted
according to their discrete curvature. The independent
set will then consist of the vertices: 1, 2, 4 and 6,
which become the candidate vertices. The candidate
vertices are then grouped according to their valence,
before the textures are created. The first row contains
the vertex 1, which is the only candidate vertex of
valence 3. The second row contains the vertices of
valence 6, namely vertices 2 and 6, and the last row
only contains vertex 4. Note that int thetables below
the indices of the vertices are given instead of the
positions.

Table 2: indices to the vertices in positionTex.
4
2 6
1

In the neighborTex, the positions of the vertices
adjacent to the candidate vertices are stored. Each row
contains the neighbors to the candidate vertices stored
at the corresponding row in the position texture. Table
2 and Table 3 show the contents of positionTex and
neighborTex respecivly.

Table 3: indices to the vertices in neighborTex
11 12 16 5 20 19 3
10 3 19 18 17 9 16 7 15 23 22 5
17 7 8

5.4 Ordering the Edges

A kernel computing the master values described in
Section 4.3 is executed for all candidate vertices with
valence at least equal to four. The four edges with
lowest master value are candidates for half-edge
collapse and their indices are returned from the kernel.
Since we need to compute the volume variation for
each of the potential edges, we perform the following
computations in a framebuffer where each pixel
corresponds to a potential edge. To simplify the
implementation, we first rotate the list of neighbors,
such that the destination vertex in the half-edge
collapse is placed first of the neighboring vertices.
With these preparations the local volume variation
associated with each potential edge can efficiently be
computed in a fragment program. The only remaining
operation before choosing which edges to collapse is to
compute the angles between the old and new triangles,
to detect flipped triangles. When the edges to collapse

are chosen, we finally rotate neighborTex, according
to the chosen edges.
Example 2 continued:
To illustrate the rotation, Table 4 show neighborTex
after the reordering. Given the half-edge collapses
where vertex 1 is collapsed into vertex 7, 2 into 3, 6
into 16 and 4 into 11. The first element of the first row
is the destination vertex for the half-edge collapse for
vertex 1. Therefore, the neighbor vertices to vertex 1
are rotated one element to the left, viz.

Table 4: neighborTex after reordering.
11 12 16 5 20 19 3
3 19 18 17 9 10 16 7 15 23 22 5
7 8 16

5.5. Evaluation of Decimation Criteria

We focused on the decimation criterion based on
error zones, because this allows the use of both a priori
and a posteriori criteria. During the first simplification
pass, i.e. before any vertex is removed, there is only
one error zone per candidate vertex. This error zone is
then attached to one of the new triangles. During later
simplification passes error zones originating from
already removed vertices must be validated.

To this end, the intersection tests are performed by
two kernels called intersect2D and intersect3D. First,
intersect2D performs a simple 2D intersection test.
Then, intersect3D performs the intersection test for the
triangle-sphere pairs that passes the 2D test. The
intersect2D kernel is executed for each triangle and
loops over the spheres assigned to the candidate vertex.
The return value is an integer value, where each bit
represents an intersection test and is set to one if the
box test is successful. Since most GPUs today do not
support integral data types or bitwise operations, this is
implemented using floating point arithmetic. Then,
intersect3D uses the bit pattern when looping over the
spheres that potentially intersect the triangle. A large
difference in the number of associated error zones will
lead to poor performance, due to the SIMD
architecture. Therefore, candidate vertices with a high
number of associated error zones are repeated in
positionTex, with different error zones.

Finally, a kernel called concludeKernel checks the
results from the intersection tests, verifying that each
sphere intersects at least one triangle. Otherwise, the
candidate vertex is marked as not removable. The
output from this kernel is the index to the destination
vertex of the edge collapse, and the volume of the
approximation error associated with this half-edge
collapse. If the candidate vertex is marked as not
removable, a negative index is returned.

5.6. CPU Treatment
The output from concludeKernel and intersect3D

are read back to system memory for the final
processing. The decimation criteria performed by the
GPU are restricted to be dependent on information in
the 1-ring neighborhood of the candidate vertex. Any
global criterion, such as total variation of volume, must
therefore be evaluated at this stage. Further, tests are
performed to ensure that the topology of the model is
maintained. Finally, the triangulation is updated and
the assigned error zones are reassigned to new faces
according to the results from intersect3D.

Figure 3: Example highlighting the effect of
variable deviation distance on the shape
simplification process. a) the initial model shaded
and tessellated, b) the map of sizes used for the
simplification process, c) the resulting model
shaded and tessellated where larger details have
been removed.

6. Results
In figure 3, an example is given to highlight the

influence of the error zones on the shape simplification
process. The variable size of error zones interactively
specified by the user helps identify specific sub-
domains as details that will be removed. Such a
variable envelope adds further flexibility to meet the
user’s requirements.

a)

b)

c)
Figure 4: Original models (a), simplified models
with active global volume criterion (b) and without
active global volume criterion (c). Fandisk models
are shown to the left, and blade models to the right.

The examples presented here are decimated with
our GPU-accelerated method. Figure 4 shows how
changing the tolerance for global volume variation
influences the simplified model.

The performance advantages of using the GPU are
illustrated in Table 5, which shows that our GPU
version is 8 times faster than our CPU version for large
models. The performance improvement with our GPU

a)

b)

c)

Larger details

version is reduced for smaller models, but the
algorithm outperforms the CPU version even for a
model with only 12000 triangles. The models were
processed using an AMD Athlon 4400+ CPU and a
NVIDIA 7800GT GPU.

Table 5: Runtimes for simplification of mechanical
models. The error zones are given relative to the
length of the diagonal of the bounding box, and the
volume is relative to the bounding box.
Model Initial

#tris
Final
#tris

Error
zone

Volume
tolerance

CPU
time
(s)

GPU
time
(s)

Blade 1765388 10818 1.3% 1.7e-6% 71.4 9.7
Blade 1765388 25830 1.3% 1.7e-5% 87.6 10.8
Fandisk 12946 148 1.3% 1.5e1% 0.583 0.21
Fandisk 12946 128 1.3% 1.5e-3% 0.57 0.21

7. Concluding Remarks

In this paper we have presented a hybrid GPU-CPU
approach for shape simplification of objects dedicated
to mechanical applications. The computational power
of the GPUs makes it feasible to include both
geometrical and mechanical criteria. These criteria are
too computationally expensive for pure CPU
implementations to preserve the user’s interactivity.
Since the candidate vertices are split into batches, the
independent set of vertices must be created by the
CPU. This prevents us from computing the
independent sets on the GPU without extra data
transfer between the graphics and system memory.

The current implementation is based on accessing
the GPU through OpenGL. We expect a performance
improvement if it is ported to an API that allows the
GPU to be used without going through the graphical
system. Such APIs can increase the performance of the
application and reduce the development time, making
approaches like the one presented here more attractive
in commercial systems.

The proposed approach has highlighted the
efficiency of the GPU architecture where significant
speed-up factors can be reached. Similarly, the a priori
criteria implemented here is a first step toward the
development of more computationally demanding
criterion. The next step of the project will be to include
stiffness based criteria involving computation and
propagation of stiffness matrices.

The use of mechanical properties during the
simplification process reduces the time the engineers
spend preparing models for FEA, and give them
objective information about the impact of their
modifications or hypotheses. This is also a contribution
to new tools helping engineers to monitor
quantitatively their structure simulations.

Acknowledgments
This work has been performed in the framework of

the AIM@SHAPE (Advanced and Innovative Models
And Tools for the development of Semantic-based
systems for Handling, Acquiring, and Processing
knowledge Embedded in multidimensional digital
objects) European network of excellence, contract
n°506766 (http://www.aimatshape.net/). The current
work has been performed in the context of a
partnership between SINTEF, the University of Oslo in
collaboration with INPG.

8. References
[1] C.G. Armstrong, D.J. Monaghan, M.A. Price, H. Ou, and
J. Lamont. “Integrating CAE concepts with CAD geometry”,
In Engineering Computational Technology edited by B.H.V.
Topping, Saxe-Coburg Publications, 2002, pp 75-104.
[2] J. Bolz, I. Farmer, E. Grinspun, and P. Schröder, “Sparse
matrix solvers on the GPU: Conjugate gradients and
multigrid” Computer Graphics SIGGRAPH 03 Proceedings,
2003.
[3] M. Botsch, D. Bommes, C. Vogel, and L. Kobbelt. “Gpu-
based tolerance volumes for mesh processing”. Proceedings
of the Computer Graphics and Applications, 12th Pacific
Conference on (PG’04),2004, pp 237–243.
[4] J. Cohen, A. Varshney, D. Manocha, G. Turk, H. Weber,
P. Agarwal, F. Brooks, and W. Wright, “Simplification
envelopes”, Proceedings of the 23rd annual conference on
Computer graphics and interactive techniques (SIGGRAPH
96), 1996, pp 119-128
[5] R. Ferrandes, P. M. Marin, J.-C. Léon, F. Giannini,
“Evaluation of simplification details for an adaptive shape
modelling of components”, Int. Conf. ECT, September 5-7th,
Gran Canaries, Spain, September, 2006.
[6] L. Fine, L. Rémondini, J-C. Léon, “Automated
Generation of FEA models through idealization operators”,
Int. J. For Num. Meth. In Eng., Vol. 49, n°1-2, 2000, pp 83-
108.
[7] G. Foucault, P. Marin, and J.C. Léon, “Mechanical
Criteria for the Preparation of Finite Element Models”, Int.
Meshing Roundtable, Williamsburg (USA), 20-22 September,
2004, pp 413–426.
[8] M. Garland, and P. S. Heckbert. “Surface simplification
using quadric error metrics”, SIGGRAPH ’97: Proceedings
of the 24th annual conference on Computer graphics and
interactive techniques, 1997, pp. 209–216.
[9] T. Hagen, J. Hjelmervik, K.-. Lie, J. Natvig, and M.
Henriksen, ”Visual simulation of shallow-water waves.”
Simulation Modelling Practice and Theory vol. 13, 2005, pp
716-726
[10] H. Hoppe, “Progressive meshes” Proceedings of the
23rd annual conference on Computer graphics and
interactive techniques (SIGGRAPH 96), 1996, pp 99-108.
[11] J. Krüger, and R. Westermann. “Linear algebra
operators for GPU implementation of numerical algorithms”,
ACM Trans. Graph., 22(3), 2003, pp., 908–916.
[12] A. W. F. Lee, W. Sweldens, P. Schröder, L. Cowsar, and
D. Dobkin. “Maps: Multiresolution adaptive

parameterization of surfaces”, Computer Graphics
Proceedings (SIGGRAPH 98), 1998, pp. 95–104.
[13] J.-C. Léon, and L. Fine, “A new approach to the
Preparation of models for F.E. analyses”, Int. Journal of
Comp. Appl., Vol. 23, n°1, 2, 3, 2005, pp 166-184.
[14] D. Lesage, J-C. Léon, P. Véron, “Discrete curvature
approximations and segmentation of polyhedral surfaces”,
Int. J. of Shape Modelling, Vol. 11, n°2, 2005, pp 217- 252.
[15] D.P. Luebke, M. Reddy, J.D. Cohen, A. Varshney, B.
Watson, and R. Huebner, “Level of detail for 3D graphics”,
Morgan Kaufmann Publishers, 2003.
[16] Mobley, V., Carroll, M. P., Canann, S. A., “An object
oriented approach to geometry defeaturing for Finite Element
Meshing”, Proceedings of 7th International Meshing
Roundtable, Sandia National Laboratories, 1998.
[17] J. D. Owens, D. Luebke, N. Govindaraju, M. Harris, J.
Krüger, A. E. Lefohn, and T. J. Purcell. “A survey of general
purpose computation on graphics hardware”, Computer
Graphics Forum, Vol. 26, 2007, pp 80–113.
[18] M. Rezayat. “Midsurface abstraction from 3d solid
models : General theory and application”, CAD, 28(11),
1996, pp 905-915.
[19] W. J. Schroeder and B. Yamrom. “A compact cell
structure for scientific visualization”, SIGGRAPH ’94 Course
Notes CD-ROM, Course 4: Advanced Techniques for
Scientific Visualization, 1994, pp 53–59.
[20] D. Shreiner, M. Woo, J. Neider, and T. Davis,
“OpenGL(R) Programming Guide: The Official Guide to
Learning OpenGL(R), Version 2 (5th Edition) (OpenGL)”,
2005
 [21] D. R. White, R. W. Leland, S. Saigal, and S. J. Owen,
“The meshing complexity of a solid: an introduction”, Proc.,
10th Int. Meshing Roundtable, Sandia National Lab., 2001,
pp 373-384.

